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The coefficients for the 'best' Fourier synthesis for electron density have been shown by Blow and Crick 
to be the centroids of probability distributions (over the complex plane) for the structure factors. In defining 
probabilities for the case in which Bijvoet differences are ignored or averaged, Blow and Crick utilized 
simplifying assumptions not in accord with probability theory. Raiz and Andreeva defined probabilities 
for the same case in a theoretically correct manner. The present treatment provides somewhat better 
approximations for that case, and an extension to the case in which Bijvoet differencesare utilized. The 
variances arising from experimental errors are maintained separately fromthose due to uncertainties in the 
heavy-atom parameters. The treatment is restricted here to derivatives in any one of which the scattering 
factors for heavy-atom anomalous scatterers have the same ratio of real and imaginary components. 
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1. Glossary Fm +, F,~ 

Structure factor Fmo ,+ Fmo- 
Amplitude, phase of F Fmh ,+ Fmh- 
Centroid 
'Parent', observed structure amplitude Fmo 
Variance of Fo dmo 
F-Fo  k m 
Number of 'normal' derivatives 
Number of 'anomalous' derivatives Sin, Vm 
N + N '  w m 

2 
derivative am 2 

75 m 
Variance of observed structure amplitude 
Structure-factor contribution from heavy- 
atom substitutions (see § 3) 
Amplitude, phase of fj 
Hypothetical error offj 
m.s. (mean square) amplitude of errors (for a 
given Bragg-angle range) of fj 
Lack-of-closure error, Fjo- IF + fj[ 
Lack-of-closure error for F = Fo 

For a 'normal' derivative 
F. Structure factor 
F.o Observed amplitude of F.  
F.h Hypothetical value of amplitude of F. (see 

§3) 
2 2 2 

* A part of this work, treating crystals assumed to contain only 
normal scatterers, was done in the Department of Biochemistry, 
College of Physicians and Surgeons, Columbia University, New 
York, N.Y., and was given in Abstract A9, American Crystallogra- 
phic Association Meeting, Suffern, N.Y., 1965. Preliminary reports 
of the analysis for derivatives containing heavy-atom anomalous 
scatterers were given in Abstract 10.11, Seventh International 
Congress, International Union of Crystallography, Moscow, USSR, 
1966, and in Abstract G1, American Crystallographic Association 
Meeting, Minneapolis, Minn., 1967. Research sponsored by the 
US Energy Research and Development Administration under 
contract with the Union Carbide Corporation. 

Structure factors for H, - H  
Observed amplitudes of Fm +, Fm 
Hypothetical values of amplitudes of F +, F;, 
(see § 3) 
(F + + F~,o)/2 

+ 
Fmo -- Fmo 
For a heavy-atom anomalous scatterer, f "If' 
(see § 3) 
See Fig. 9 
dmo + 2kmvm 
1 2 2 

2 2 2 2Om + 4km~m 

2. Introduction 

The multiple isomorphous replacement method as 
applied with macromolecular crystals does not in 
practice yield unambiguous phase determinations 
because of several sources of error. These include the 
experimental errors in measuring structure amplitudes; 
errors in the determination of positional, thermal and 
occupancy parameters for the heavy-atom substitu- 
tion sites; and deviations from exact isomorphism. 
Blow & Crick (1959) have treated each structure factor 
for the 'parent' crystal as a random complex variable 
with a probability distribution p(F, ~p) derivable from 
all the data for that reflection. They defined the 'best' 
Fourier synthesis as that having the minimum expected 
mean-square error in electron density, as averaged over 
the whole unit cell. They showed that, given certain 
assumptions regarding the randomness of errors, the 
'best' Fourier is obtained by taking for each coefficient 
the centroid Fc of the probability distribution p(F,~p): 

f2~ f ~(F exp i~o)p(F,~o)FdFd~o 
F c =  o (1) 

fI~ f ~P(F,q))FdFd~p 
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In deriving an expression for the probability distribu- 
tion, they assumed that errors in the measured struc- 
ture amplitudes have Gaussian distributions, and that 
the (complex) errors in the calculated structure-factor 
contributions due to heavy-atom substitutions have 
amplitudes with Gaussian distributions and random 
phases. They treated only 'normal' derivatives - those 
for which Bijvoet differences are considered negligible 
or are averaged. Blow & Rossman (1961), North (1965) 
and Matthews (1966) have extended the Blow-Crick 
treatment to 'anomalous' derivatives- those containing 
heavy-atom anomalous scatterers - for which the Bij- 
voet differences are utilized. 

The treatment described here differs from that of 
Blow & Crick (1959) principally in the definition of the 
probability distributions and the manner in which they 
are combined. Blow & Crick made several assumptions 
which simplified the derivation of an expression for 
the probability distribution and the calculation of the 
centroid. They first considered the probability distribu- 
tion, here denoted BC p, , for the parent structure factor 
as determined from data for the pair, parent and nth 
derivative. They obtained pBC as a function of (p alone 
on the circle F =  Fo, where Fo is the observed parent 
structure amplitude,* by defining it in a manner equiv- 
alent to the following: 

p~C(~o) = f ]po(F)p.(F,~o)dF, (2) 

where po(F)is the probability distribution related to 
errors in Fo, and p,(F,q)) is that related to errors in 
F,o, the observed structure amplitude, and in f,, the 
calculated heavy-atom structure-factor contribution 
for the derivative. The correctness of equation (2) will 
be shown in § 7.? 

They obtained as an approximation 

p,BC(q~) = exp {-[X,,o((p)]2/ZE2}, (3a) 

where X,o(q)) is the lack-of-closure error [Fig. l(a)] 
and E 2 is the variance [see equation (14)1. (This prob- 
ability and all those following are unnormalized.) The 
joint probability, here denoted pBC, was defined, 

N 
pBC(q)) = 1-] p~C(tp), (3b) 

l 

where N is the number of derivatives. The centroid 
could then be calculated by one-dimensional numer- 
ical integration: 

* The term 'observed structure amplitude' will be used for sim- 
plicity, although, of course, the amplitudes are calculated from ob- 
served intensities. 

q" Equation (2) may not appear to correspond to Blow & Crick's 
Fig. 7(b), in which the integral was illustrated as if it related only to 
errors in f. and F.o. However, it can be deduced from their discussion 
that the illustrated Gaussian probability distribution for errors in 
F.o (FH in their figure) was actually a convolution of Gaussians for 
errors in Fo and F.o, a procedure which they showed to be valid if 
f.4~F.o. Moreover, the variance (62) of this illustrated Gaussian 
was defined as the mean-square error in F.o-Fo [their equation (3t]. 

F~C=Fofi'(expiq))pBC(~°)d~ ° 
fi~pBC(qo)d~o (4) 

Since each pBC is an integral which involves the term 
Po, these probabilities are not independent and there- 
fore should not be multiplied as in equation (4). To do so 
gives too high a weight to the observed Fo. 

Raiz & Andreeva (1970) have considered the prob- 
ability, for the case of normal derivatives only, as a 
function of two dimensions, F and q~. A separate 
distribution was defined for each crystal form - parent 
and derivatives - so that these distributions were 
independent and could properly be multiplied to 
obtain the joint probability. The probability distribu- 
tion for derivative n was defined [by their equation (3), 
in present nomenclature and without the normaliza- 
tion constant] as  pRA(F, c p ) ' ~ e x p  [--x2(F,(p) /Z(ERA)2] ,  
where the lack-of-closure error x,, varies with both F 
and (p, and the superscript RA denotes Raiz-Andreeva. 
FRAy2 _,, , was said to be the sum of the variance of F.o 

and a term related to errors in f., as indicated by Blow 
& Crick's (1959) analysis of the distribution p~C(~p) 
[see equations (3) and (14)]. By equation (8) below, with 
the assumption that x,,~ F.o, it may be seen that the 

2 the mean-square amplitude second term in ,--nl'~-~Rn)2/is ~., 
of errors in f.. Then 

pRA(F, (p)... exp 2 2 [-x,(F,(.p)/2(6,, + e,2)]. (5) 

The mathematical treatment of this paper is applied 
to both normal and anomalous derivatives. The Blow- 

(a) 

(c) 

Fig. 1. (a) Construction showing the lack-of-closure error X.o, 
defined here as F.o-  F .... the negative of the term as defined by 
Blow & Crick (1959). If the parent circle is replaced by one with 
arbitrary radius F, the lack-of-closure error is denoted x,,. (b) 
Shaded areas represent regions of high probability (Po and p,,). 
(c) Equiprobability contours for the joint probability POP.. 
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Crick and Raiz-Andreeva  assumpt ion that  f ,  ~ Fo is 
somewhat  relaxed, so that  better approximat ions  to the 
' true'  probabi l i ty  distr ibutions are obtained, for both 
normal  and anomalous  derivatives, than those of 
previous authors.  The variances 62 of the observed 

2 of the structure ampli tudes Fro , and the variances ej 
calculated heavy-a tom structure factors fj, are carried 
separately th roughout  the analysis. In this way, the 
probabi l i ty  distr ibutions (and calculated centroid) for 
a given reflection depend on the est imated precision of 
the observed structure ampli tudes for that  reflection. 
Est imat ion of the variances e 2, following least-squares 
refinement of the heavy-a tom parameters,  is discussed 
below. 

The t rea tment  described here applies to acentric 
reflections. A related t reatment  of centric reflections is 
in preparat ion.  

An elementary idea of the procedure followed here 
(and by Raiz & Andreeva,  1970) may be conveyed by 
Fig. l(b,c). (The detailed t reatment  follows in § 3.) In 
Fig. l(b) the probabi l i ty  distr ibution po(F), related to 
errors in the observed parent  amplitude,  is indicated 
as a shaded annular  region between circular equi- 
probabi l i ty  contours.  The distr ibution p,(F, ~o), related 
to errors in F,o and f,, is similarly indicated. This 
annulus  is broader  than that  for Po because there is 
uncertainty in the posit ion of the center of the deriva- 
tive circle as well as in its radius. It is impor tan t  to note 
that  this distr ibution p, represents the probabil i ty  that  
(F, ~0) is the structure factor of the parent, as related to 
errors in the ampli tude and in the heavy-a tom param- 
eters for the derivative. Fig. l(c) shows equiprobabil i ty  
contours  of the joint  distr ibution pop,. The joint  
distr ibution would be multiplied by another  distribu- 
tion of the same type as p,, for each addit ional  normal  
derivative. 

~ F~o 

Fig. 2. Diagram of the right-hand sides of equation (6) for one normal 
(n) and one anomalous (m) derivative, where F,o, f, and F,+o, 
F£,o, f,, are considered to be subject to error. F,n is the hypothetical 
structure amplitude for the normal derivative if z, is the error in 
f," and F+h, F,7,h are the pair of hypothetical amplitudes for the 
anomalous derivative if z,, is the error in f,.. 

3. Probability distributions 

The given quantit ies for a single reflection include (a) 
for the parent :  the observed ampli tude Fo; (b) for the 
nth normal  derivative: the observed ampli tude F.o, 
and the calculated structure-factor contr ibut ion due 
to the heavy-atom substi tut ions f.; (c) for the ruth 
anomalous  der iva t ive : the  observed ampli tudes Fmo(H) 
and Fmo(-H) (to be denoted F+,.o and Ff.o), and the 
calculated structure-factor contr ibut ions fro(H) and 
f , . ( - H )  (which are related to each other as discussed 
below). It is assumed in this paper  that for all types of 
heavy-a tom anomalous  scatterers in any one derivative 
the same ratio k obtains, where 

k - f  "If ' ,  

and the scattering factor i s f ' + / f " .  The symbol fm will 
hereafter be defined as follows: 

fro-- ~ aif)exp(2~iHrj),  

where the sum is over all the heavy-atom anomalous  
scatterers in the unit cell, and a t is an occupancy factor. 
Then the structure-factor contr ibut ions are fro(1 +ik)  
for H, and f~,(1 +ik)  for - H .  If there were no errors 
and the i somorphism were exact, the following rela- 
tions would hold :t 

F =  - f , ,  + F,  (6a) 

F =  -fro(1 + i k ) + V  + (6b) 

F =  - f,,(1 - ik) + (F,:)* (6c) 

where F, F,,, Fm + [=Fro(H)]  and F£, [ = F m ( - H ) ]  are 
the (true) structure factors for the parent,  nth normal  
derivative, and mth anomalous  derivative. 

Fig. 2 is a d iagram of equations (6) for one normal  
and one anomalous  derivative, where the observed 
structure ampli tudes and calculated structure-factor 
contr ibut ions  are considered to be subject to error. The 
probabi l i ty  that  any complex number  (F,q~) is the 
structure factor for the parent  is the probabi l i ty  of 
having made  all the implied errors.~ The error in Fo 
would be F o - F ,  the probabi l i ty  of which is given by 
equat ion (7a), where 6o 2 is the applicable variance. 

With the assumption that  (F,~0) is the parent  struc- 
ture factor, the implied errors in f, and F,o are 
interdependent.  If the error in f, were z,, then the hypo-  
thetical value of F,  would be F,h(F,z,), where F ,h=  
F + f , - - z ,  (see Fig. 2), and the error in F,o would be 
(F,o - F,h). The probabi l i ty  of these two errors occurring 
together is given by the integrand of equat ion (7b) 

t Equation (6c) is obtained by taking the complex conjugates of 
both sides of the equation, F~ =F" +f,,(1 +ik). It is assumed that 
anomalous scattering from protein atoms may be neglected. 

++ This statement is a consequence of Bayes' theorem. 'Prob- 
ability' as used first in the sentence refers to 'posterior probability', 
a degree of belief. As used the second time with respect to experi- 
mental errors, it refers to a 'likehood'. See, for example, Lindley 
(1965) especially the discussions in section 1.6, part 1, and chapter 5, 
part 2. 
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' where 62 and 52 are the variances, and the assumptions 
regarding the distributions of the errors are the same 
as those of Blow & Crick (see § 2). This expression must 
be integrated over the complex plane. 

The errors in f,,, + Fmo, and Fmo are likewise inter- 
dependent. An assumed error Zm in f,n would imply the 

+ + 
pair of errors (Fmo-F,,h), (Fmo-FY, h) in the two am- 
plitudes (see Fig. 2). The probability of these three 
errors is given by the integrand of equation (7c), where 
the same variance is assumed to apply to both 
amplitude measurements. This probability must also 
be integrated over the complex plane. Assuming that 
P0 and all Pn and Pm are independent,? the joint prob- 
ability p(F, q~) is given by their product [equation (7d)]. 

p (F) =exp [ - (Vo-  F)2/262] (7a) 

pn(F, cp) [ exp [ -  (Fno- = Fnh)2/26n__Z,,/2e,,]dz,2 2 2 (7b) 
tl Zn 

f __ F +  + 2 p m ( F , ~ o ) =  exp { [( mo -t- Fmh) (Fmo - - 2 2 Fmh) ]/26,n 
Zm 

2 2 -Zm/2em}dz,n (7c) 

p(F, qg)=po(F)[O pn(F, qg)][O p',,(F, cp) 1. (7d) 

It remains to perform the integrations of equations 
(7) so as to obtain Pn and p~ as analytical functions of 
F and q0; then to reduce the integrations for the cen- 
troid (equation 1) to a one-dimensional form. 

4. Integrations to obtain p and p' 

Equations (7b, c) for Pn and P'm cannot be integrated as 
closed forms, but have been integrated with the use of 
approximations. Since the derivations are lengthy, 
they are outlined in Appendix 1, with mathematical 
details in Appendix 3. 

It was assumed for purposes of approximation that 
6HF~o and ej/F~o are small. These are among the usual 
conditions that moderately good phase information 
be obtained with derivative j. (Infrequent exceptions 
are cases in which f~/Fo is large and Fro small.) If the 
conditions do not hold, and derivative j provides 
relatively poor phase information, cruder approxima- 
tions for Pn and Pm are acceptable. In the integrations 
the assumption of Blow & Crick (1959) and Raiz & 
Andreeva (1970) that f~F~o was somewhat relaxed. 
The result for a normal derivative (Appendix 1) is:I: 

p,,(F, qg) (1 2 2 2 2 "~ +enX,,/2crnFno) exp(-xn/2an), (8) 

t Frequently, several derivatives have heavy-atom sites in 
common. In such cases, certain systematic errors in the calculated 
f /s  - such as those due to departures from isomorphism - may be 
similar for these derivatives, so that the effects of these errors are 
enhanced by multiplying the probability distributions. The present 
treatment does not remove this problem. 

~: It is to be noted that p,(F,q~) does not depend on Fo or 6o 2. 

where 
2 _ _  2 2 

~7n = 6n + e.n . 

xn(F, q3)=-Fno-I F +fnl- 
2 2 Negative values of Pn, obtained for Xn < -  2crnFno/~n, 

are meaningless, and if they cause the joint probability 
to be negative, it is set to zero (see § 5). 

As shown in Fig. 8 for the integration in equation 
(7b), pn(F,q~) varies only with IF+f,I, and therefore has 
circular symmetry about the terminus of --In in the 
Argand diagram (Fig. 1). As Fig. l(b) roughly illu- 
strates, the function p,(F, ~o) resembles a ridge of high 
probability lying over the circle for the nth derivative 
in the diagram. 

Fig. 3 illustrates comparisons of approximations 
obtained with equation (8), and of Raiz-Andreeva 
approximations (equation 5), with 'true' probabilities 
obtained by numerical integration of equation (7b). 
The agreement for equation (8) is to within a few 
percent (of the maximum value of pn) for most of the 
range of interest, and is best for small ~n. For large ~n, 
Pn is a highly asymmetric function of Xn, to which equa- 
tion (8) gives at least some degree of fit, whereas the 
Raiz-Andreeva and Blow-Crick probabilities are less 

/=/i: 
/ \ 

- 5 0  0 50 

(a) 

x x o*O~J 
x o/,O / 

: / /  //  
, / /  

-50  0 

..--~ x n 

(b) 

x 
x 

,--~\ 

\ : \  
\ \  

50 

Fig. 3. Probability p,. for a normal derivative as a function of x,. The 
curves represent numerical integrations of equation (7b). © 
approximations given by equation (8). x Raiz-Andreeva approx- 
imations, equation (5). For all calculations F,o = 100, and a scale 
factor was applied so that p , =  1 for x, =0. (a) 6 , = 5 ;  (b) c5,= 15. In 
each case the bottom, middle and top plots are for e, = 10, 30 and 
70. The marked ordinate (/9,) intervals are 0.2, and the plots are 
displaced from each other vertically by 0"2. 

(b) 

Fig. 4. Illustration of the reason for the dependence ofpn on the sign 
of x,. Equiprobability contours are as in Fig. 8. The degree of 
overlap of the two probability functions, as indicated by the 
shaded areas, is greater for (a) Xn > 0, than for (b) x, < 0. 
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satisfactory, being symmetric with respect to x,. The 
reason for the asymmetry is indicated in Fig. 4. 

The same kinds of approximations were used in the 
integration of equation (7c) as for (7b) (see Appendices 
1 and 3*). The result is 

p',,(F, qg) ,,, (1 + (~2 82x/62"ca Fmo + 4k2g2 s/'c2 Fmo) 

xexp  20.2 2z 2 1 + ~  40.2 x , (9) 

where most subscripts m are omitted for clarity, and 
where 

_ _ 1  + - -  Fmo=7.(Fmo + Fmo) 
__  + - 

A mo= Fmo - Fmo 

Wm= Amo + 2k,,,v,,, 
0 . 2 _ _ 1 ~ 2 - - ^ 2  

m = 2 0 m  -I" ~ m  

2 2 2 2 + 4kmgm Z m ~ 2C~ m 
The lack-of-closure error xm and the parameters Sin, Vm 
are shown in Fig. 9 and are defined in Table 1. The 
Bijvoet-difference error Wm is Amo-(Am)calc. Negative 
values of p~ are meaningless, and if they cause the joint 
probability to be negative, it is set to zero (see § 5). 

Approximations for Pm given by equation (9) have 
been compared with numerical integrations of equa- 

* See footnote :~, p. 78. 

(d) 

(h) (i} (g) 

Fig. 5. Examples of probability distributions Pm over the complex 
plane for an anomalous derivative by three different methods of 
calculation. For all calculations, Fmo = 100, Amo= 10, f" = 50, c~"= 
0, k"=0.2 and 6,.=5, while e,.= 10 for (a), (b), (c), 30 for (d), (e), 
(f), and 70 for (g), (h), (i). The approximation of equation (9) was 
used to calculate (a), (d), and (g). Numerical integrations of equa- 
tion (7c) were used for (b), (e), and (h). The expression of equation 
(17) was used in the calculations for (c), (f), and (i). The termini of 
the two vectors -f,.(1 + ik) (see equations 6b, 6c) are the centers of 
the circles with radii F,.o +_ A,.o/2. Note the change of scale for (g), 
(h), and (i). The contours for each calculation are drawn at 10, 50, 
and 90% of the maximum p~, for that calculation. The R values (see 
text), obtained by comparison with the corresponding numerical 
integration (on the same row of the figure) were (a) 3, (c) 9, (d) 9, 
(f) 22, (g) 37, and (i) 65%. 

tion (7c) for all combinations of the following values: 

Fmo = 100; km =0"2;* fm= 25,50; 
Amo=O, lO, 20,40; ~m=5,10,30; em=10,30,70. 

F and cp were sampled over the region in which Pro, 
evaluated numerically, is greater than 19/o of its 
maximum value. A conventional R index, 
Y, I p '(numerical)-p'(approx.)l/Ep'(numerical),  was cal- 
culated over this region for each set of parameters. R 
ranged from 0"7 to 489/0, with 89/0 as the median value. 
Examples of good, fair and poor agreement are shown 
in Fig. 5. As for normal derivatives, the poorer agree- 
ment for large e may be accepted, since in these cases 
the phase-determining power is weak (see Fig. 5g, h). 

R indices were also calculated for p ' =  exp ( - x 2 / 2 a  2 
-w2/2z2) ,  an expression which can be shown to be 
related to those of North  (1965) and Matthews (1966) 
for the case of a single isomorphous pair [see § 7, 
equation (17)]. R ranged from 2 to 82%, with 229/o as 
the median value. Examples of p' computed in this way 
are given in Fig. 5(c), ( f )  and (i). From geometric 
considerations it is clear that p', as calculated in this 
manner, must have a line of mirror symmetry per- 
pendicular to - f , ,  and passing through the terminus 
of this vector. However, as shown in Fig. 5, the 'true' 
probability distributions as calculated by numerical 
integration, and the approximations to these distribu- 
tions from equation (9), may be considerably asym- 
metric. 

5. Calculation of centroid 

After substitution from equations (7a, d), (8) and (9) 
into equation (1), the two-dimensional integrals for 
the centroid may be reduced to one-dimensional forms 
by the use of several approximations. As outlined in 
Appendix 2 and shown in full in Appendix 3,t xm, sin, 
w,,, and F 2 have been approximated as first-degree 
(two-term) Taylor series in (F -Fo) ,  expanded about 
the point F=Fo.  In the resulting expressions all pro- 
ducts higher than first degree in (F-Fo) /Fo  have been 
neglected. Furthermore,  the lower limit of integration 
along F has been changed from 0 to - ~ .  These 
approximations are valid for reasonably small 6o/Fo. 
A poorer degree of approximation is acceptable for 
reflections with data of very low precision. Then as 
outlined in Appendix 2, the integrals for the centroid 
reduce to the one-dimensional forms of equation (10), 
Table 1. If, because of the various approximations, 
either integrand of equation (10) should be negative for 
a given cp, both integrands are set to zero for that qg. 

The computing time is not much increased over that 
required for previous treatments. In a program avail- 
able from the author, no additional transcendental 

* The maximum value for k in current practice is usually about 
0.2 (for uranium, Cu K~ radiation, d = 2.5 A), except for some rare- 
earth elements, for which k approaches 0-3 under the same condi- 
tions. 

t See footnote ~., p. 78. 
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functions are calculated, and most of the arithmetic 
is done once per reflection for each derivative. 

6. Es t imat ion  o f  var iances  

The variances 6 2 c a n  be estimated in the usual manner 
for the given method of intensity measurement. If 
there is at least one centrosymmetric zone, the variances 
e 2 can be estimated, as described by Blow & Crick 
(1959), as follows. If anomalous-scattering effects are 
neglected, the structure factors for centric reflections 
are real, andre--IFjo +_ Fo[ if there are no errors. Let 

E 2 (IFjo ± F 2 = ol - f ~ )  , (13) 

where the sign is chosen for each reflection so as to 
minimize the expression. Then E 2 is the sum of the 
average variances of Fo, Fjo  andj). In the nomenclature 
of this paper, 

2 (14) 
so that 

2 2 2 2 e~ = Ej - (60 + 6~ ). (15) 

2 is expected to vary with Bragg angle (Crick & Since ej 
Magdoff, 1956), it should be evaluated for limited 
Bragg-angle ranges, large enough to contain statis- 
tically significant numbers of reflections. 

When anomalous scattering is taken into account, 

the heavy-atom structure factors for centric reflections 
have imaginary components which, under usual 
experimental conditions, have amplitudes less than 
¼ the real components. The relation f , . . .~  IF.,  +_ Fo] still 
holds to a good approximation (if there are no errors) 
for all but a small number of reflections - those for 
which the real part of f,. is approximately - F o .  
Therefore, the effect of the imaginary components may 
be neglected, or alternatively, reflections for which 
f , , , ~ F o  and F,,,o is small might be omitted from the 
calculation. 

The heavy-atom parameters and the scale factors for 
derivative structure amplitudes, used in evaluating 
E 2 (equation 13), can be refined by least-squares pro- 
cedures (Kartha, 1965; Dickerson, Weinzierl & Palmer, 
1968). In the procedure of Dickerson et  al.  (1968) 
alternate cycles of refinement and phasing (calculation 
of centroids) are employed, where in the refinement 
EhWhXj  21 is minimized for each derivative j, the sum 
being over all reflections h at either the 'best' or most 
probable phase for the parent. If this procedure is 
used, the eSs would be re-evaluated after each refine- 
ment cycle by the use of equations (13) and (15) for 
centric zones. The fiSs, however, would remain con- 
stant throughout all cycles. 

For  cases with no centrosymmetric zone. the estima- 
2 is a more difficult problem, tion of the variances ej 

beyond the scope of this paper. 

Table 1. E q u a t i o n s  f o r  c a l c u l a t i o n  o f  t h e  c e n t r o i d  

For clarity, subscripts n or m have been omitted from the symbols 6, e, 0-, z, and k; 
subscripts mo from s, v. A, and w; and subscripts no or mo from x. 

f z'~(exp iq))A [1 + (2/Fo + B)D/C] exp (D2/C + G)dq) 
F c ' F o  o (10) 

f 2nA[-I + (1/Fo + B)D/C] exp (O2/C + G)dtp 
0 

N t N t N t N t N t 

A = I - - I A  j, B = Z B j / A j ,  C = Z C  j, D = Z D  J, G = Z G  J 
0 0 0 0 0 

Normal derivative 
A. = 1 + e2x/20-Z F.o 
B. = - Oe2 /20- F .o 
C n = Q2/20-2  

Dn = QX/20- 2 

G n = -- x2/20 -2 

0 -2 = 62 + e 2 

Parent 
Ao=l; B0=Do=Go=0 
Co 1/262o 

All derivatives 
X ~-  X j o  -~- F j o  - -  F j c  o 

2 Fjco = [Fo + 2 f r o  cos (~o - ctj) +f2] 1/2 
~?j = [Fo+ fjcos (~ - ~j)]/Fjco 
(fi.cg): see § 3 

(11) 

Anomalous derivative 
A., = 1 + (a2/z2 F,,,o) (62x/0 "2 + 4k2s) 
B,,, _ (~"292/,~2Fmo) ( 6 2 / 0  -2 .3ff 4k2) 
C m = ~"~2/20-2 
D,,, = f l  (X /20  "2 -'F k 2 e 4 w 2 / 6 2 z 4 F m o )  

Gin= 20-2 2r 2 1 - t - ~  s -  + 2~2 4 ~ g r -  x 
0-2=½62+~2 
r E = 262 + 4kZe 2 
s = S.,o = (f , , /F .... ) [ f .  + Fo cos (qo - ct,.)] + x 
v - V.,o = - f , ,Fo  sin (q~ - ~,,,)/F ..... (12) 
w=- W.,o= A + 2kv 

1 + Fmo = ~(F.,o + F,7,o) 
+ 

A = F.,o - F .... 
k = f " / f '  
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7. Comparisons with previous treatments 

For the case of a single isomorphous pair, parent and 
one normal derivative, the centroid of Table 1 is roughly 
the same as that of Blow & Crick (equations 3, 4). It 
can easily be shown by Table 1 and equations (3) and 
(14) that 

exp(DZ/C+G)=exp[_ 2 2 e2)] X,,o/2(6o + 62 + 
= exp ( 2 2 --X,o/2E,,)=pB, C(q~). 

Then the integrands of equations (4) and (10) are the 
same if the nonexponential factors of equation (10) 
are omitted. For cases with more than one derivative, 
the approximate correspondence between the treat- 
ments breaks down, and the centroids can differ 
appreciably (see § 9, example 1). 

For the case of a parent and one anomalous deriva- 
tive, with the same value of k for all heavy-atom 
anomalous scatterers, both North (1965, equations 2, 5) 
and Matthews (1966, equations 1-7) gave the prob- 
ability p(~0) in forms equivalent to the following: 

p(q)) = e x p ( -  X2o/2E 2) exp [-(An + 26 sin y)Z/2E'2], (16) 

where by comparison of Fig. 9 with North's Fig. 3 and 
Matthews's Fig. 1, and by the definitions given for 
AH, 

(AH + 26 sin y)2 =(Amo+2kmvmo)2 =Wm o2 (this paper). 

The centroid obtained by using the probability expres- 
sion of equation (16) in equation (4), as North and 
Matthews did, is roughly the same as that from Table 1, 
if appropriate values are assigned to E z and E '2. If 
terms in 2 km/Fmo are neglected, we obtain from Table 1" 

exp (D2/C+ G) exp [ 2 2 1 2 2 ..~ --Xmo/2(aO+Tam+em)] 
X exp ( 2 2 - Wmo/2"Cm), 

SO that if the nonexponential factors of equation (10) 
are also omitted, the integrands of equations (4) and 
(10) are the same, with 

E2=~2 1 2 2 and E ' =  + -~~m -t- gm "Crn" 

These approximations in equation (10) correspond to 
the approximations: F ~ Fo, and (see equation 9) 

pro(F, qg)--~exp 2 2 2 2 ' ( -  Xm/2am -- Wm/2Zm). (17) 

The latter expression was used for the calculations 
illustrated in Fig. 5(c), ( f)  and (i). For more than one 
derivative, the correspondence between the treatments 
breaks down. 

8. Error in electron density 

Blow & Crick (1959, equation 13) derived an expression 
for the expected mean square error in electron density, 
averaged over the entire unit cell. In the nomenclature 
of this paper, 

f 'F-Fcl2p(F'q )FdFdq' 
hkl ffp(F, o)FdFdq  , ( 1 8 )  

where V is the unit-cell volume. They also showed that 
the contribution from one reflection is 

2 
f fF2p(F, q))FdFd~o 

f fp(F, q))FdFdq~ 

(19) 

With the Blow-Crick treatment of the probability, 
equation (19) reduces to 

((Ao)2}hu=E2(Fo)~kJV 2] ( 1 -  m2k,), (20) 

where m, the figure of merit, was defined (Dickerson, 
Kendrew & Strandberg, 1961) as m-Fc/Fo. With the 
Blow-Crick treatment m must be less than 1, but with 
the present treatment m may (in unusual cases) be 
greater than 1 (see example 1). It is therefore not exactly 
a 'figure of merit' here. 

The expected error in the electron density can be 
estimated by carrying out the integrations in equation 
(19), using the probability distributions of Table 1 and 
the same substitutions and approximations as in § 5. 
The integral in the denominator is the same as that in 
equation (10), Table 1. For the numerator, 

fi'~ f ~ F2p(F,q~)FdFd~p 

f? ,,,F 3 A[I +(3/Fo +B)D/C] exp(DZ/C+G)dq). 

Then 

2(eo 
((A Q)2)hkt "~ V 2 

fI'~A[I +(3/Fo+ B)D/C] exp (D2/C +G)d(p 

x fi A[a +(1/Fo+B)D/C]exp(D2/C+G)dq ) 

-- Fo2f. (21) 

The integral in the numerator of equation (21) can 
easily be evaluated numerically at the same time as 
the integrals of equation (10), Table 1 (see example 1, 
§ 9). A new figure of merit m' can be defined by setting 
the expression in braces in equation (21) equal to 
1 -  (m') 2, producing an expression analogous to equa- 
tion (20). 

AC 33A-6 
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9. Examples 

As stated above, an effect of the simplifying assump- 
tions made by Blow & Crick was to give excessive 
weight to the observed parent amplitude when N > 1. 
Accordingly, consider the following idealized case: 
circles for three normal derivatives cross at a point off 
the parent circle (Fig. 6). This is an extreme form of the 
case of an unusually large error in a parent amplitude. 
Centroids calculated by the Blow-Crick procedure 
(equations 3, 4) and by the present one (Table 1) for 
particular values of the variances are shown in Fig. 6. 
Note that the centroid from Table 1 lies much closer to 
the intersection of the derivative circles and to the peak 
of the probability distribution (calculated as in Table 1) 
than does the Blow-Crick centroid, which is displaced 
toward the cp range in which the derivative circles 
together most closely approach the parent circle. This 
is a case in which the centroid from Table 1 has an 
amplitude greater than Fo, and thus'corresponds to an 
apparent figure of merit, Fc/Fo, greater than 1. How- 
ever, the new figure of merit m' (§ 8) is 0.91. 

A second example involving a single isomorphous 
pair, parent and one anomalous derivative, is shown in 
Fig. 7. Centroids calculated as in Table 1 are com- 
pared with that from equations (4) and (16), where E' 
is taken as E/3, as suggested by Matthews (1966). 
Values chosen for 60 and 61 (taken as equal) and for 
el are such that E 2 (=6o2+6~+e~) remains constant, 
so that the centroid from equations (4) and (16) is 
always the same (for the chosen values of Fo, Fro, A1 
and ft). However, the centroids given by Table 1 differ 
appreciably for the various combinations of variances. 

+ 

Theoretically, the use of an improved procedure for 
combining the data should result in a more nearly 
error-free Fourier, but it is difficult to predict the ex- 
tent of improvement. Clearly, and as has been re- 
cognized, the Blow-Crick procedure weights too heavily 
the measurement of the parent amplitude, and the over- 
weighting becomes more pronounced as the number of 
derivatives increases (there is none for a single isomor- 
phous pair). Therefore, one would expect the present 
treatment to be most useful in cases with many deriva- 
tives to minimize the effect of errors in the parent 
amplitudes. The better approximations illustrated in 
Figs. 3 and 5, and the use of variances which depend on 
the precision of the observations for each reflection, 
should also give improved results. Even if the improve- 
ment in a particular case resulted in the correct place- 
ment of only one additional residue of the macro- 
molecule, the small increase in computer time would 
be justified. 

The author is most grateful to Drs H. A. Levy and 
V. R. R. Uppuluri for helpful criticisms of the manu- 
script, and to Professor Barbara W. Low for her con- 

tinued interest. A part of this work, treating crystals 
assumed to contain only normal scatterers, was done 
in the Department of Biochemistry, College of 
Physicians & Surgeons, Columbia University, New 
York, N.Y. This research was sponsored by the U.S. 
Energy Research and Development Administration 
under contract with the Union Carbide Corporation. 
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Fig. 6. Probability distribution, centroid from Table 1 (×),  and 
Blow-Crick centroid (equations 3, 4) (+ )  for first example (see 
text). Parent amplitude, 100. The vectors - f ,  are shown as heavy 
lines. The derivative circles cross at (125, 0"). All standard devia- 
tions, 6, and e,, are assumed to be 10. The half-maximum contour 
is shown for p(F,~o) as calculated by Table 1. Inset: plot of p~C(q~). 10. Discussion 

Fig. 7. Centroids from Table 1, and from equations (4) and (16), 
(Blow-Crick-North-Matthews procedure), for second example 
(see text). The heavy lines represent - fl (1 _+ ik). Parent amplitude, 
100. The standard deviations for the calculations accordin~ to 
Table 1 were assumed to have the following values, where 6 = 6o = 
6 1 : ~  6=  3,sl = 16"8; ® 6 = 6 , s =  15-1;O 6=  10,el = 10. In all cases 
E = 17.3 (see text). The symbol + shows the centroid as calculated 
by equations (5) and (18), with E'=E/3, for all three pairs of 
standard deviations. 
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APPENDIX 1 

Integration to obtain p 

Fig. 8, which is directly related to the construction for a 
normal derivative in Fig. 2, is similar to Fig. 7 of Blow 
& Crick (1959), except that F does not necessarily 
equal Fo. The 'lack-of-closure' error, F,,o-IF+f,I ,  is 
denoted x,. Circular equiprobability contours are 
shown for the probability distributions related to the 
two errors, z, and (F,,o- F,,h). The complex error z, has 
Cartesian coordinates x+x,,,  y with respect to the 
orthogonal axes shown in Fig. 8. 

In integrating equation (7b) several approximations 
will be used, which are valid over a limited region of 
x,y since the exponential integrand decreases rapidly 
toward zero outside a central region. Values of the 
approximate expression thus obtained for the integrals 
are compared (in § 4) with numerical integrations of 
equation (7b) for wide ranges of the parameters in 
order to show that the approximations are satis- 
factory for practical purposes. 

Assume that 6,,/F,,o and e,,/F,,o are small (see § 4). 
Then, as may be seen from Fig. 8, the probability 
p,,(F,~o) will be small except in the region in which 
Ixl/F,o and lYl/F,o are both small, implying small rela- 
tive errors in F,,o and in f, respectively. Thus F,h may be 
approximated by a series which retains only first and 
second degree terms in x/F,,o and y/F,,o, and it may be 
shown (Appendix 3) that 

(F ,o -  F n h )  2 ~ X 2 + xyZ/Fn. (22) 

By substitution into equation (7b), 

p,, ~-, exp [ - x 2 / 2 6 ~ - ( x  + x,,)2/2e~] 
--0(3 

x exp [-(x/26~F,,o + 1/2e~)y2]dydx. (23) 
--GO 

/ y 

Fig. 8. Construction for integration of p,. F,o is laid off from the 
point (F,q~) rather than from the terminus of - f ,  as in Fig. 1. 
Equiprobability contours for the errors (F,o-F,h) and z, are at 
arbitrary intervals. 

The integrals can be evaluated by means of a known 
formula (Bierens de Haan, 1957): 

f ~  ( A + B x ) e x p ( - C x 2 + 2 D x + G ) d x o o  

=(rc/C)I/2(A + BD/C) exp (D2/C + G), (24) 

where C > 0. Omitting constant factors as shall be done 
for all probabilities, the integral over y is 

2 2 - 1 / 2  2 2 (1 + e, x/6,, F,o) , and is defined for x > - 3, F,o/e,,. 
The integral becomes infinite at this limit only because 
of the use of the approximation of equation (22). For 

- e .  x /26 , ,  Fno, small x, the integral is approximately 1 2 2 
an expression which is defined for all x. By substitu- 
tion in equation (23) and the use of equation (24), one 
obtains equation (8). 

Integration to obtain p' 

In Fig. 9, which is directly related to the construction 
for an anomalous derivative in Fig. 2, the following 

I + - + definitions are used: F,,,o==- ~(Fmo + Fmo), Amo= Fmo - 
Fmo. The lack-of-closure error, Xm, is measured from 
the terminus of -fro (see Fig. 9 and the definition of 
fm in § 3). The origin of the diagram in Fig. 2 has the 
coordinates - s ,  - v  in Fig. 9. With the same kinds of 
approximations discussed with regard to equation (22), 
it may be shown (Appendix 3) that 

+ + 2 [(Fmo- F,,,h) + (F~o-  Fmh)2]/2 
x 2 + (ky + w/2) 2 + [xy 2 - ky(2ky + w) (x + s)]/Fmo, (25) 

where w, the Bijvoet-difference error, is given by 
W m ~ d m o  -1 t- 2kmvm. 

In the following, second-degree terms in x/Fmo and 
s/Fmo, and 2k 2, are neglected compared to one. After 
substitution of the expression above into equation (7c) 

2 by (x + Xm) 2 "JI- y2, the integral and replacement of Zm 
over y is obtained by the use of equation (24) (see 
Appendix 3). As in the derivation of p,, it is ignored 
that C becomes negative as x ~ - ~ .  Omitting the 
constant factor, the integral is 

[ 1 - 2e2(x-  2kZs)/zZFmo] exp {(k2eZw2/'c2(~ 2) 
x [ 1 - 2(z 2 + 2eZ)x/zEFmo-432s/zZFmo] 
--(4X 2 -I- W2)/462 --(X + Xm)2/2eZ}, 

where z 2 =-232 +4kZe 2. Again applying equation (24) 
to integrate over x, one obtains equation (9) (see 
Appendix 3). 

APPENDIX 2 

Integration to obtain the eentroid 
Approximations for x j, Sm and Vm are obtained as the 
first two terms of Taylor series, expanded about F = Fo. 

As shown in Appendix 3, 
xj,~ Xjo -- (2~,, 

Vm"~Vm°' (26) 
Sm "~ Smo -- Q@ , 

W m ,~" W m o ,  

f2j==_ [Fo + f i  cos (q~-o~j)]/Fico , 

A C  3 3 A - 6 "  
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where Xjo, V,,o, Smo, Wmo are the values at F = Fo, and 
Q = F - F o .  Values of f2j are in the range { -  1,1 }, and 
are close to one for small values ofjJFo. After substitu- 
tion of the approximations, equations (7a), (8) and (9) 
have the following form: 

pj(o, q~) = (Aj + BjoL) exp ( - CjO~ 2 "-~ 2Djo + G j), (27) 

where A j,..., G, are functions of q~ but not of Q, and are 
given in Table 1. 

Substituting for F by the identity, F-Fo(1  +O/Fo), 
and combining equations (1) and (7d), one obtains 

(exp iq)) (1 + o/Fo) 2 1--1 PJ(Q, q~)dQdq) 
- Fo 0 

Fc=Fo N, , 

f i e f  ~ (l +Q/Fo) l-I pj(o,q~)dodq~ 
- F o  0 

(28) 

where each pj is given by the appropriate expression in 
the form of equation (27). The term (Q/Fo) 2 in the 
numerator will be neglected in comparison with one, 
and the lower limit of integration over Q will be changed 
to - ~ ,  since for reasonably small 6o/Fo, Po decreases 
rapidly with 10l, and to a very small value for 0 = -Fo .  
The product of the nonexponential terms of the pj's is 
YI(Aj + BjO) = II(Aj)rI(1 + Bjo/Aj). The products of the 
terms Bjo/Aj with each other and with O/Fo may also 
be neglected. For normal derivatives, [B,,o/A,,[,~e20/ 
2a2F,,o < o/2F,,o, since e2 < a2; and for anomalous 
derivatives, IBmo~/Am[ ,~ ~2e2 Q/cr2"c2 Fmo < o/2Fmo, since 
e 2 < a 2 and ~2 < ~2/2" Then 

Then 
(F,o - Fnh) 2 "~ X 2 + xy2/F,,o, 

neglecting the higher-degree term. 

Derivation of equation (25) 
From Fig. 9, omitting most subscripts m, 

x +- =x-T-kO'+v) 
y+ = y+_.k(x + s) 

+ 2 +)2 +)2. (Fro,,) =(F,,,o+X +(y 

With the same approximation used in the derivation 
above of equation (22), 

F+h..~F.,o+X + +(y+)2/2Fmo. 

Since F.+o - F.,o + A/2,  

(Vg-Vmh)2~(X - + A/2) 2 + ( x -  + A/2) (y-)2/Fmo. 

,+4- 2 where the term ( ) )  /Fmo is neglected. Similarly, 

(F,+o + 2 + --Fmh) "-(X --A/2) 2+(x +-A/2)(y+)2/vmo, 

Now 

x + -T- A/2 = x -T- (ky + w/2) 

where w -  2kv + A, and 

½[(x+-A/2)  2 + ( x - + A / 2 ) 2 ] = x  2 +(2ky+w)2/4.  (28) 

f: )] (exp iqg) (A exp G) 1 + ff0-o + B e exp ( -  C02 + 2De)dedq~ 
Fc..~ Fo 

f : ~ ( A e x p G )  f : ~  I I +  (~-~-/+B)olexp(-CQ2+2DQ)dQd~P 

A,..., G are as given in equation (10), Table 1, and are 
functions of q~ only. Integrations over Q by the formula 
of equation (24) yield the expression for the centroid 
given in equation (10), Table 1. 

APPENDIX 3 

Derivations of some results in Appendices 1 and 2 

Derivation of equation (22) 
From Fig. 8, 

F2.h = (F,,o + x)  2 --~ y2, 
2 2 F.h/F.o = 1 + 2x/F,,o + (x 2 + yZ)/F2o. 

Expressing the square root by a binomial series, and 
neglecting terms higher than second degree in x/F.o 
and y/F,,o, 

F.h/F.o..~ 1 + x/F,,o + yZ/ZF2o, 
F,,h - F.o "~ x + yZ/2F.o. 

Y 

(x*, y÷) l 

m~, / \ \  
/ / A  t ~ ( x . y - )  

/ I - - - - - - /  /z,.,,l 
/ I - - -  / ~_z/¢g 

K ~xm I" mc "I Xm~ 

I" F~o .i_l 

Fig. 9. Construction for integration of pi,,. For equations (12), F= Fo. 



J. RALPH EINSTEIN 85 

Also 

(x + -T- A/2) (y+)2 
= I x  -T-(ky + w/2) 1 [y2 jr. 2ky(x + s) + kZ(x + s)21 

½[(x + - A/Z)(y + )2 + (x-  + A/2) (y-)21 
= x [ y Z + k Z ( x + s ) 2 ] - k y ( 2 k y + w ) ( x + s ) .  (29) 

Division of equat ion (29) by Fmo and addit ion to equa- 
tion (28) yields equat ion (25), where the term k2x(x + s)2/ 
Fmo has been omit ted because of the factor k2/F,,o. 
[-The term -2k2y2(x+s)/Fmo has been retained be- 
cause to do so leads to a neater expression in equat ion 
(9).1 

Integration of  equation (7c) 
Throughou t  this derivation, terms higher than first 

degree in x/F,,o and s/Fr, o are neglected. After substitu- 
tion from equat ion (25) into equat ion (7c), the ex- 
ponent  in equat ion (7c) is 

- { x  2 + (2ky + W)2/4 
+ [xy 2 -- ky(2ky + w) (x + s)]/Fmo}/62 
--  [-(X "~- Xm) 2 -~- y23/282. 

Expressing the integral over y in the form of equat ion 
(24), 

C = [-k 2 -F x / F m o  - 2kZ(x -F s ) / F m o l / 6 2  q- 1/282 
~ (z2/46282) [ 1 + 482(x - 2kZs)/z 2 Fmol, 

where zz---262+4kZe 2 and 2k 2 has been neglected 
compared  with one, 

D = - kw[1 - ( x  + s)/Fmol/262, 
G = - (4x 2 q- w2)/462 - ( x  -q- Xm)2/2e 2 . 

Expressing C -1 and C -1/2 as power series, and 
neglecting higher-degree terms, 

C -  1"-~(46282/z 2) [- 1 - 482(x - 2k2s)/z2Fmol, 

C -  1/2 "~(268/Z) [- 1 -- 282(X - 2k2s)/z2Fmol • 
Also, 

D 2 ~(kZw2/464) [ -1-2(x  + s)/Fmo]. 

As in the derivation of equat ion (8), it is ignored that  C 
becomes negative as x ~ - o o .  By equat ion (24), 
omit t ing the constant  factor and neglecting higher- 
degree terms, the integral over y is approximate ly  

[- 1 - 2g2(x - 2kZs)/zZFmo] exp {(k282w2/ '~262)  

x [ 1 - 2(z 2 -t- 2 g 2 ) x / z 2 F m o - 4 6 2 s / z Z F m o ]  

--(4X 2 q- W2)/462 - - ( X  + Xm)2/2g2} .  

The coefficients for integration over x by equat ion 
(24) are: 

A = 1 + 4k2eZs / ' c2Fmo,  

B = - 2/32/zZFmo, 

C = 1/32 + 1/282 = 0-2/32/32, 

w h e r e  0 -2 ~½62 +/32, 

D = - k2E2(~ 2 --{- 282)w2/-c462Fmo --  Xm/282 , 

G = (kZ/32wZ/'cz62) (1 - 462s/ 'c2Fmo) - w2/462 - x2/282 • 

Then, with the same kinds of approximat ions  as above, 
the integral is as given in equat ion (9). 

Derivation of  equations (26) 
F rom Figs. 8 and 9, 

Fj 2 = F2-{ - 2Ffcos  p + f 2  

v = - F f  (sin #)/Fjc 
s = ( f  z -  V2) 1/2 -t- Xj ,  

(30) 

where xj ==-Fjo- Fjc and # = ~o- o~ i. In order  to obtain 
two-term Taylor  series, expanded about  the point  
F=Fo,  for x;, v, and s, the first derivatives are 
required:  

~x~/OF = - 8Fjc/OF = - (F + f cos ~)/Fjc 

Or~OF= - ( f  sin ~)(F~ 2 -  F 2 --  F f  cos #)/Fac 
= - ( F f  2 sin # c o s  p + f 3  sin !a)/F3c,,~O 

Os/OF.~Oxi/~F. 

Here Ov/OF is taken as approximate ly  zero because 
the expression, obtained by subst i tut ion from equa- 
tion (30), is second degree i n f /F .  Given that  Ov/OF..~O, 
the approximat ion  for 8s/OF follows. The Taylor-  
series approximat ions  (equations 26) follow directly, 
with w,,.-~ Wmo, since w,, = Amo + 2kmvm. 
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